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ABSTRACT 

For the almost periodic or periodic solutions of an Euler-Lagrange equation, 
with a convex lagrangian, under a condition of symmetry on the lagrangian, 
we establish a necessary condition that involves the second differential of the 
lagrangian. We deduce from this some results of non-existence. 

From a lagrangian L E CI(R" X R", R) one can formulate an Euler-Lagrange 

equation: 

(E.L.) Lx(x, ~ ) = d L~(x, Yc ). 

We are interested in the periodic or u.a.p. (uniformly almost periodic) 

solutions of (E.L.). 
Apk(R ") denotes the space of u.a.p, functions from R into R" of  which the 

derivatives, until order k, are also u.a.p. For x EAP°(R"), 

I f  Jtt{x} = lim x( t )dt  
T ~  T 

denotes the mean value of x, and for ~. E R, a ( x ; 2 ) : =  . t t { x ( t ) e -  ia, },. 
In [2], [3], [4], we built a functional 

0(x) := J I { L ( x ,  ~)} -- lim L(x( t ) ,  .~(t))dt 
T ~ o c  T 
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on APt(R n) and showed that ¢'(x) = 0 if and only if x is a u.a.p, solution of 

(E.L.). If C~(R ~) denotes the space of T-periodic continuously derivable 

functions with values in R", the restriction of ~ at C~(R ~) is 

CT(X) :=  T $o rL(x(t)'  2(t))dt; 

and O6-(x) = 0 if and only if x is a T-periodic solution of (E.L.). 

In this paper, we consider the particular case where L is a convex function. 

The convexity of L implies the convexity of ¢, and # ( x ) =  0 if and only if 

¢(x) = Min ~. Furthermore Arg min ~, that is, the set of  the x ~ API(R ") that 

minimize ~, is exactly the set of  the u.a.p, solutions of (E.L.), and is a convex 

subset of AP~(Rn). 

THEOREM 1. Let  L ~ C2(Rn X R", R) be a convex lagrangian. Let x E 

API(R ") a u.a.p. (or periodic) solution of  (E.L.); c :=  .//{x}. We assume: 

(Sym.) Lx~(C, O) = Lxx(C, 0). 

Then we have 

x(R) - c C Ker Lxx(C, 0) n Ker L:~(c, 0). 

COMMENTS. The condition of symmetry (Sym) is satisfied, for example, 
when n = 1 since L is of  class C 2, or when the state variable and the rate 

variable are separated: L(x, 2 ) =  V(x)+  W(2), or, more generally, when 
L(x, 2) = V(x) + W(£) + B(x, 2) with B bilinear and symmetric. 

LEMMA. Let A and B be two real symmetric n × n non-negative definite 
matrices. Let u ~AP~(R ") such that ~/{u} = 0 and Bz~ ~AP~(Rn). 

Then the two following assertions are equivalent: 
(i) for all t ER, Au(t) = (d/dt)(Bfi(t)), 

(ii) u(R) c KerA n KerB.  

PROOF OF LEMMA. It is clear that (ii) implies (i) since, under (ii), (i) is 

reduced to 0 = 0. Conversely, we assume that (i) is verified. Then, for all 2 E R, 

We have a(Au; 2) = Aa(u; 2) and 
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{ d }  
= - . t l  B f t ( t ) . 7  e -'~t , (cf. [3] Prop. 2) 

= i2vtl ( Bf~( t ) . e-~'  }, = i2B.ll { t~( t )e-i~t }t 

d 

And so we obtain, for all 2 ER ,  (A + 22B)a(u; 2) = 0, i.e. 

(A + 22B)Re a(u; 2) = 0 and (A + 22B)Im a(u; 2) = 0. We remark that if 

vER" verifies (A + 22B)v = 0, then 

0 = ((.4 + 22B)v, v) = (Av, v) + 22(By, v) = 0, 

therefore, when 2 ~ 0, (Av, v) = 0 and (By, v) = 0, therefore Av = 0 and 

By= O, i.e. v ~ K e r A  n KerB.  

Consequently, for all 2 ~ R  [ {0}, Re a(u;2) and Im a(u;2) are into 

Ker A n Ker B. Introduce now P, the orthogonal projector on Ker A n Ker B. 

We easily verify that Re a(Pu; 2) = P(Re a(u; 2)) = Re a(u; 2), and 

Im a(Pu; 2) = P(Im a(u; 2)) = I m  a(u; 2). Therefore for all 2 ER, 

a(Pu; 2 ) =  a(u; 2) and, by the Uniqueness Theorem of Fourier-Bohr series 

(of. [1], p. 27), we obtain that P ( u ) = u .  This equality means that 
u(R) c KerA n KerB.  [] 

PROOF OF THEOREM 1. We denote u := x - c. We have shown in [3], [4] 

that c is also a solution of (E.L.). Since Arg min 0 is a convex set, we have, for 
all 0~[0 ,  1], c + Ou = (1 - O)c + 0(c + u)EArg  rain 0. Therefore, for all h E 
ApI(R ") and all 0E[0,  1], we have: 

0 = O'(c + Ou).h = ~ { ( L x ( c  + Ou, Oft), h) + (L~(c + Ou, Oft),//)}, 

and so 

d O'(c + Ou). h [ o = o 

= ~t'{(L~,(c, O)u, h) + (L~(c,  O)t~, h) + (L~(c,  O)u, h) 

+ (L~(c,  0)~2, fi)}. 
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As a consequence of the hypothesis (Sym.) we have 

d 
(Lx~(C, 0)~, h ) + (L~,(c, O)u, ti) = -fit (L,a(c, O)u, h ). 

Therefore (cf. [3] Prop. 1); 

J/{(Lxx(C, O)a, h) + ( L~(c,  O)u, ti ) } = O. 

This remark permits us to obtain, for all h ~API(R"), 

(1) oa((Lx (C, O)u, h) + h ' )}  = 0. 

But the left side of (1) is exactly the differential of  the quadratic functional 

Q(z) :=  ½~tl{(Lxx(c, O)z, z)  + (L~(c,  0)2, ~)}, 

at u in the direction h : Q'(u).  h = 0. Then the Dubois-Reymond Lemma (of. 

[3] Part B) implies that L~(c,  0)~ UAP~(R ") and: 

d 
(2) Lxx(C, O)u = -fit (L,~(c, O)~t). 

In taking A = L,,x(C, 0) and B = L~(c,  0), the preceding lemma allows us to 

conclude that: 

(3) x(R) - c = u(R) C Ker L~(c,  0) O Ker L~(c,  0). [] 

We can translate the conditions (2) and (3) into a condition on the func- 

tional 0: 
d , 

O"(c)(u, h) = ~-0 ~ (c + Ou)h 10-0= 0, 

and so each one of the conditions (2) and (3) is equivalent to 

(4) O " ( c ) ( u ,  . ) = O. 

And so the non-constancy of x = c + u implies the degeneration of the 
bilinear form O"(c). 

COROLLARY. We suppose that L is a convex function of  class C 2. Let c E R" 
such that Lx(C, O) = O. We assume the condition 

(Sym.) Lx~(C, O) = L,~(c, 0). 

Then we have: 
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(i) I f  Ker Lx~(C, 0) n Ker L~(c, O) = (0) then (E.L.) does not admit any 
non-constant periodic or u .a .p. solution with a mean value equal to c. 

(ii) I f  L~(c, O) is positive definite, then the alone u.a.p, solution of  (E.L.) 
with a mean value equal to c is the constant c. 

(iii) I f  L~(c, O) is positive definite, then the constant c is the unique u.a.p. 

solution of (E.L.). 

PROOF. (i) results from Theorem 1, and (ii) results from (i). For (iii), 
the assertion (i) implies that the unique u.a.p, solution of (E.L.), with a 
mean value equal to c, is c. But we have shown in [5] (Prop. 2) that the 
condition Lx~(C, 0) implies that all the u.a.p, solutions of (E.L.) admit  c as 

mean value. [] 

In order to write the canonical form of (E.L.) one uses the hamiltonian 

H(x, p ) : =  sup(< p, y)  - L(x, Y) IY 

which is a concave-convex function. When we want H to be of class C ~, 
generally we assume that L~(x,  y) is invertible, therefore L~(x,  y) > 0 since L 

is convex. But, due to the assertion (ii) of Corollary, when L~ = L~x and when 

L~ > 0, (E.L.) cannot possess any non-constant u.a.p, solution. And so, when 
Lx~ = L~,  generally, if (E.L.) possesses non-constant u.a.p, solutions, we 

cannot associate to (E.L.) the Hamiltonian System: 2 =Hp(x,p) ,  1~ = 
-Hx(X, p), but we can only associate to it the Hamiltonian inclusion: 
.~EOp H(x, p), -- pEOx H(x, p) (cf. [6] §1.4, and [9]). 

Another consequence of the assertion (ii) of Corollary is that a second 
order differential equation: 3~ = V'(x), where V is a convex function, 
cannot admit  any non-constant u.a.p. (or periodic) trajectories, since 
it is the Euler-Lagrange equation associated at the lagrangian L(x,  .~)= 
½1~12+V(x), and, for all c ~ R " ,  we have Lx~(c,O)=L~(c,O)=O, 

Lx~(c, O) = I > O. 

Rockafellar ([9]) and Gaines and Peterson ([8]) consider, for a fixed real 
T > 0, and for a convex lagrangian L,  the variational problem: 

£ (5) Minimize L(x(t), 2(t))dt, x EHJr(R ~) 

where 
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Hr~(R ") = (z EH~L (R, R") I z is T-periodic} 

= HI( R ]rz, R"). 

The problem (5) is equivalent to 

(6) Minimize 0r(x), x EH~(R"). 

The necessary condition of the first order for (5) or (6) is 

(E.L.)w Lx(X(t), ~(t)) -- d Lx(x(t), .~(t)) Lebesgue-a.e. on R. 

That constitutes a notion of weak (T-periodic) solution of (E.L.). 

THEOREM 2. Let L E C~(R" × R", R) be a convex lagrangian. Let T be a 
positive real number. We assume that Or ~ C t( H~ (R"), R). Let x E H~ (R") be a 
solution of  (E.L.)w Then: 

(i) c : =  (1/T)~ x(t)dt is a solution of  (E.L.)w, and also of  (E.L.). 
(ii) I f  L is of  class C 2, i f  Or is twice Gdteaux-differentiable and i f  Lxx(C, O) = 

L~x(C, 0), then x(R) - c c Ker Lxx(C, 0) N Ker L~(c, 0). 

PROOF. The convexity of L implies the convexity of 0r, and consequently, 

Or(x) = Min 0r if and only if O-~-(x) = 0 if and only i fx  is a T-periodic solution 
of (E.L.)w. ~ denotes the orthogonal projector from H~-(R") onto R" identified 
with the constant functions from R into R". In using the Fourier series of  x: 

x ( t ) = c +  Y~ akCOS--kt+bkSin kt , 
k>=l T 

we can verify that, for all c~ E R ", we have 

L £ r ( x ( t ) - c , c ~ ) d t - - O  and (2 ( t ) -d ,d~)d t=O.  

And so x - c is orthogonal to R" in H~r(R"), therefore c = n(x). 

Let S be a real positive number such that S /T  is irrational. We 

denote Zsf( t ) :=f( t  +S),  then Zs is a bounded linear operator from 

H~(R ~) into itself, and the set of  the elements of H~-(R ~) that are invariant 

by Zs is exactly R ". Since L is autonomous, we have 0r  ° Zks = 0r for all 
k ~ N, and so ZksX ~Arg min 0r. Moreover, Arg min Cr is a closed convex 

subset of  H 1 (R"). 

By the Ergodic Theorem of Von Neumann (of. [7], p. 34) 



Vol. 67, 1989 CALCULUS OF VARIATIONS 343 

v-I  
z~(x) = lim 1 y~ r ~ x  in H~(R"). 

v~c  V k.=O 

We remark that 

1 v - I  v - I  1 
- 2 = 2 
V k =0 k =0 V 

is a convex combination of elements of Arg min Or, and therefore c = n (x )E  

Arg min 0T. That justifies (i). 

We denote u : =  x -  c. By the same arguments as those of the proof of 

0~ [0 ,1 ]  and all hEH~(R") ,  Theorem 1, we verify that, for all 

O~-(c + Ou). h = 0, and 

That implies 

d 
o = ao OT(c + Ou). h I o ~ 0 

f V( (Lxx(C, O)u, h) + (L~(c, O)a, ti) }dt. 
dO 

Lx~(c, O) = d L~(c, O)ft Lebesgue-a.e. 

After that, in working with the Fourier series, we obtain: Re a(u; (2rt/T)k) 
and Im a(u; (2n/T)k) belong to Ker L~(c, 0) n Ker L~(c, 0). Then P(u) and 
u possess the same Fourier series, therefore P(u) = u, and u(R) c Ker L~(c, O) n 
Ker L~x(c, 0). [] 

The consequences of  Theorem 2 are similar to those of Theorem 1. For 

example, under the hypothesis LxAC, O) = L~(c, 0), the condition 

Ker Lxx(c, 0) n Ker L~Ac, 0) --- {0} forbids the existence of non-constant weak 

T-periodic solutions with c as mean value, of Euler-Lagrange's equation, or 
equivalently of the problem of minimization (5) under the constraint 

( l /T)  ~ x(t)dt = c. 
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